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Abstract

Bragg reflectionfrom single crystals is commonly applied to definemonochromaticbeamsin neutronand X-ray scattering.In
general,mosaiccrystalsprovidea significantlyhigherparticleflux thanperfectcrystals,at theexpenseof a deteriorationin thebeam
divergence.This disadvantagecan beovercomeby usinggradientcrystals,which arecharacterizedby a continuousvariationin the
crystal latticespacing.Diffraction froma gradientcrystalcanbedescribedby simplemirror reflectionfor adesiredwavelengthband.

We synthesizedvarious Si1 _~Ge~singlecrystalswith both fixed and continuouslyvarying concentrations.They weregrown on
silicon substratesfrom a mixture of SiH4, GeH4, H2, HCI in a low pressurechemical vapordepositionreactor.The latticespacing
gradient was obtained by controlled variation of the gasflows. The variouscharacterizationtechniquesemployedemphasizein
particular theaspectsof growth rate,crystallinity and mixing of the components.A test on a neutrondiffractometerof a 0.85mm
thick crystal,grown for 24 h, showedtheexpectedperformance.

1. Introduction other, but show different lengths. Thus, an incident
phase-spaceelementkeepsits shapeafter reflection, i.e.

Crystalmonochromatorsare usedto selector analyze thebeamdivergenceremains~, andthereisno dispersion
energy in neutronand X-ray scattering[1]. Although between energy and direction. In other words, the
oneobtainsthe bestresolutionwith perfectcrystals,the acceptedphase-spaceelement is reflected as from a
reflectedintensity is increasedrapidly by usingimperfect mirror.
crystals.The imperfectionsleadto eithera relaxationof Thedistribution in length of the G-vectorsis achieved,
the angulardefinition of crystal planes(mosaiccrystals) by varying the size of the unit cell as a function of the
or a relaxationof the lattice spacingdefinition(gradient spatialcoordinatesr of the gradientcrystal.Thatmeans
crystals).Theincreasedintensity is relatedto aneffective for the real spacelattice vectorsdhkl with Miller indices
increasein the reflecting crystal volume. Bragg’s law hkl and of a constantgradient~hk(

definesthe energy selectionas r
_l (\ .1 ~A\I1 g~~jr

= kf + G uhkl~r, = UhklI,IJ) [i +

where k1, kf are the incident and reflectedwavevectors ~hkl is thegradientcorrespondingto dhk, andfor a cubië
respectively,and G is the reciprocal lattice vector for lattice transformsin the sameway as dhk,
the crystal volume concernedA distribution of G causes h

2 k2 12\h/2 — 2 + 2 2 1/2

the reflection of neighboring wavevectors for both — m fl o g,,~
0

mosaicandgradientcrystals.Figure 1(a) showsthe case Lattice spacing gradientscan be obtained in various
for an idealmosaiccrystal: the G-vectors,all of the same ways, for exampleby imposinga temperatureprofile on
length, are inclined to each other with an angular a thermally dilating material or, as in our case, by
distribution ‘i around the mean direction. An incident varying the compositionof analloy. Silicon—germanium
phase-spaceelementwith a divergencecx is reflectedto compounds(Si1 ~Ge~)are interestingcandidates.First,
a deformedenergy-dispersedphase-spaceelementwith they can be mixed over the entire concentrationrange
a divergence2~j+ cx. In the caseof a gradientcrystalas x. Second,the elementshavethe samelattice structure
shown in Fig. 1(b), the G-vectors are parallel to each (diamond lattice). Starting from a pure silicon crystal,
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Fig. 1. Reflection diagrams for neutrons in reciprocal space for a easilycontrolled.Figure 2 showsa sketchof the LPCVD
mosaiccrystal(a) anda gradientcrystal(b). furnace.A quartzstand(0 = 1 50 mm)to hold thesilicon

wafer (0 = 100 mm) is located inside a water-cooled
vesselof stainlesssteel(0 30 cm, h 30 cm). The sub-

silicon atomsareprogressivelyreplacedsubstitutionally strate is heatedfrom below by a graphite resistor. A
by germaniumatoms.The first point assuresthat the thermocouplenearthe wafer monitorsthe processtern-
germaniumsites are statistically distributed over the perature.
silicon lattice without formation of clusters.Third, the There are four processgas lines: I % SiH4 in argon,
lattice constantof pure germanium(a0(Ge)=5.658A) is 1% GeH4 in argon,H2 and H2—HC1 respectively.Each
4.2% larger than that of pure silicon (a0(Si)= 5.431 A). line is equippedwith an electronicallycontrolled mass
It hasbeenshownthat the averagelattice spacingof an flowmeter. The gasesare brought to a mixing chamber
Si1 ~Ge~alloy varies linearly with germaniumconcen- andguided to the top of the LPCVD vessel.Inside the
tration x reactionchamber,thegasjet is dispersedhomogeneously

over the substratesurface.The pressureinsidethe vessel
ao(Si1_~Ge~)= (1 — x)a0(Si)+ xa0(Ge) is regulatedvia pumpsandcontrolvalveson the exhaust
a0 being the edgelength of the unit cell. line. Before growth, the wafers are subjectedto a high

temperatureH2 bakeat 1450 K for 5 mm followed by
an H2—HC1 etchat the sametemperaturefor 2 mm to

2. Crystalgrowth removethenativeoxide.Thegrowth startswith epitaxial
depositionof pure silicon. Progressiveintroduction of

So far, attemptsto grow single crystals of Si1 ~Ge~ GeH4in the gasstreamleadsto theformationof graded
directly from the melt have been without success.In layerswith increasinggermaniumconcentration.Typical
fact, the first high-qualityepitaxial layersof thesealloys processparametersare 1320 K for the depositiontern-
on silicon substrateswere obtainedby molecularbeam peratureand a pressureof about p = 150 Pa. Growth
epitaxy [2, 3] and very low pressurechemicalvapor rates~of 0.7 ~.tmmm - havebeenachievedunder these
deposition(CYD) [4, 5] for use in integratedcircuit conditions.
technology.In an alternative approach,we synthesize
them by low pressure chemical vapor deposition 3. Experimental crystal growth
(LPCVD). A silane(SiH4)—germane(GeH4)gasmixture
streamsover a heatedsilicon substrate.The SiH4 and The first resultswereobtainedon small-sizedsamples
GeH4 moleculeswhich contactthe hot surface(1320 K) (2cm x 2cm Si[lOO] wafers), used to optimize process



R. Madar et al. / LPCVD of Si,_~Ge~gradientcrystals 231

parametersas well as surfacepreparationof the sub- i. .1,.. i.. • • i. • I,,.. I.. • I I
10

strates.Crystals with both stepped(step crystal) and
continuousvariation in germaniumconcentrations(gra-
dient crystals)weremade. 8

The results of a microprobe analysis are shown in (2) .

Figs. 3(a) and 3(b) for a step crystal and a gradient 6

crystalrespectively.Thesecurveswereobtainedby scan-
ning with a fine electronbeamover the polished edge ~
of abrokenwafer.

concentrationx in the bulk is lessthan thecorresponding 0 ________________________________________The concentrationx of the Si1 ~Ge~crystal as afunction of the concentrationc(GeH4)in the gas phase 2
is shown in Fig. 4 for the step crystal. The germanium
concentrationc(GeH4)in the gasmixture with 10

c(GeH4) [%]
Xstep= 0.79c(GeH4)

Fig. 4. Germaniumconcentrationx of an Si1 - ~Ge~step crystalas a
Evaluating the gradientcrystaldata, a slightly different function of the germaneconcentrationin the gas phase: curve 1,

relation is obtained: experimental; curve 2, results of the thermodynamiccalculations;
curve 3, ideal curve correspondingto total decompositionof the

Xgradient = 0.67c(GeH4) reactivegases.

This differencein slope can be explainedby the time

8. I • .,I • I.. • I I • I •. I •i. • I I constantfor changingthe gascompositionin thereactor

chamber.

~rrT~

This systematicdeviation of the layer composition
6~ relative to the GeH4: SiH4 ratio in the gas phasehas

.2 alreadybeenfound and discussedin other reports on
a

CVD of thesematerials. Thermodynamicequilibrium
4. calculations[6, 7] show indeedthat the introductionof

chlorine atomsin the system(from intentionally intro-
duced HCI or resulting from the decomposition of

2. SiH~Cl2[8]) leads to a decreasein the germanium

contentof the depositedlayer comparedwith the ideal
value (Fig. 4). However, the experimentalvalue is far

0. below thecalculatedvalue,which meansthatany model-
20 40 60 80 100 ing of this processmust include the fluid mechanicsof

(a) x [~tm]
the gas phasein the description of experimentalcondi-

8. •• I. I. • I.. I. • I I .. • .1 •.. tions and some hypothesisof the depositionkinetics.
This work is in progress.

Figures5(a) and5(b) show optical micrographsof the
surfacesof a [lOO]-oriented anda [11l]-oriented crystal

6.

E respectively.As expectedfrom the symmetry of the
a

crystals, squaresare observedfor [100] and triangles
S

for [Ill] wafers. Thesewell definedstructuresindicate4.
epitaxial crystallinegrowth.

For neutron and X-ray scattering,gradientcrystals

~..I~.ITTI.TI.TIT.I.II.I,2. with a thicknessin the centimeterrange are necessary.An estimationfor this is given later. To obtain suchthick crystals, thegrowth rateis a very importantaspect____________________________________ andshouldbe of the order of 0.7p.m min’ (117 A ~_1)~
0~iIIII

0 20 40 60 80 i00 The growth ratecan be readilydeterminedby weighing
(b) x [~tm] the waferbeforeandafter crystal growth.Alternatively,

Fig. 3. Microprobe analysis of a step crystal (a) and a gradient microprobemeasurementson step crystalsas shownin
crystal (b). Thegrowth time was 20 mm for eachstep,total 100 mm Fig. 3(a) can be used. Figure 6 shows the experimental
in case(a) and 180 mm in case(b). growth rate as a function of the processtemperature
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~ and SiH4 flux. In general,a highertemperatureas well
as higher flux increasesthe growth rate. The aim of

0.7 p.m mm 1 has beenreachedunderfavorablecondi-
tions (gasflux, temperature,pressure).During 24 h, two
gradientcrystalswith thicknessesof about0.85 mmwere
grown.

I

4. Neutrondiffraction

The gradientof the crystals must be optimized with

respect to a particular crystal reflection and neutron

wavelength.The reflectioncurve of a perfect crystal intheBragggeometryis knownasa Darwincurve.Usually,

(a) < 1 mm > it is plottedas a function of a dimensionlessparameter

y, which may be simply explainedas the half-width of
the Darwin plateau.y is directly proportional to the
lattice parametervariation,which is

öd/d=9.l5 x 10-6 ~,

for neutronsand Si[l 11].
A characteristiccrystal thicknessA~is necessaryto

approachthe ideal shapeof this curve. The basis of an
optimal gradient crystal assumesa change in lattice
parameterd by Ad/d= A)./A within a thicknessA0, where

* A)~/2denotesthe naturalwidth of the Darwin curve. In
otherwords,theposition of Darwincurvesfor neighbor-
ing crystalvolumeswhich havea thicknessA0 are shifted

1, ! by the gradientcorrespondingto their own widths A2/

-< lOOp.m ~.. . .
(b) Thus,the reflectivity of theseoptimizedgradientcrys-

Fig. 5. Picturesofa [100] surface(a) anda [111] surface(b) ofcrystals tals risesto a saturationvalue of 100% inside a range
grownby our LPCVD technique.Theyshowstructurescorresponding ö)/À = gD/d, D beingthe thicknessof the gradientcrystal.
to thecrystalsymmetry. If the gradientg is too large, the lattice spacingvaries

too rapidly and too few lattice planes interfere for a

T [°C] given wavelength.Consequentlythe intensity decreases.

1300 1100 900 However, if g is too small, primary extinction occurs
I preventinga portionof the crystalvolume from contrib-

uting to the reflectivity. Valuable crystal volume is
0.50 a - wastedeven in the caseof absorption-freecrystals.For

the Si[lll] reflection, A0=34 p.m. Thus crystalswith a
thicknessof several millimeters are necessaryfor the

a -4.a~~ reflectivity to increaseseveralhundredtimes.

~ 0 10 °~-~ . Figures 7(a) and 7(b) show experimentalresults from
a gradientcrystal and a perfect silicon crystal respec-

0 05 . tively. Thesedata were measuredon a neutronback-
o 10.8 cm

3/min silane scatteringspectrometer.Thescanwasperformedparallel
3.6 to the reflecting Si[l 11] reciprocal lattice vector. The

o 1.8 .. ,, figuresshow the transmittedintensityasa function of y.

006 0.7 0.8 0.9

5. Resultsfor neutrondiffraction
1000/T[K~]

Fig. 6. Crystal growth rate as a function of temperatureand silane The measuredline width of the gradient crystal is
flux. YB=150, (~d/d=l.4x 10~),i.e. 75 times larger than a
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1.1.1 i....I....I....I..,,I I,...I Its integratedreflectivity, however,is 3.18, which is very
i.2

S close to the theoreticalvalueof it.

i.o. • ~ )~4~.4~.
. S. cs’. •‘:

• 6. Discussion.0.8 •

I,:E • : The neutronbackscatteringdata reflect the gradient
~06

S in the lattice parameterspacing well. The intended
0.4. . gradientis about threetimessteeperthan for the ideal

case. In fact, the measured5d/d and the total crystal
0.2 . thickness of D=0.85 mm lead to an effective crystal

volume of approximatelyA0/3. Thus the expectedpeak
0.0 . ____________________________________________ reflectivity is approximately 75%, which is in fair

I
-300 .200 100 0 iDO 200 300 agreementwith the measuredvalueof 65%.

(a) y

.... 7. Conclusion
1.2

•.

We havedemonstratedthe feasibility of growing thick1.0 - Si1 _~Ge~gradientcrystals by LPCVD with very high
growth ratesof up to 0.7 p.m min ~. The composition

0.8 -

) andthe quality of the singlecrystalshavebeencarefully
~ 0.6- . analyzed.Their diffraction propertiesare well under-

stoodand theyoffer novel applicationsin bothneutron
=

and short-wavelengthX-ray optics.
0.4
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